This is an unofficial snapshot of the ISO/IEC JTC1 SC22 WG21 Core Issues List revision 116a. See http://www.open-std.org/jtc1/sc22/wg21/ for the official list.

2024-12-19


440. Allow implicit pointer-to-member conversion on nontype template argument

Section: 13.4  [temp.arg]     Status: NAD     Submitter: David Abrahams     Date: 13 Nov 2003

None of my compilers accept this, which surprised me a little. Is the base-to-derived member function conversion considered to be a runtime-only thing?

  template <class D>
  struct B
  {
      template <class X> void f(X) {}
      template <class X, void (D::*)(X) = &B<D>::f<X> >
      struct row {};
  };
  struct D : B<D>
  {
      void g(int);
      row<int,&D::g> r1;
      row<char*> r2;
  };

John Spicer: This is not among the permitted conversions listed in 14.3.

I'm not sure there is a terribly good reason for that. Some of the template argument rules for external entities were made conservatively because of concerns about issues of mangling template argument names.

David Abrahams: I'd really like to see that restriction loosened. It is a serious inconvenience because there appears to be no way to supply a usable default in this case. Zero would be an OK default if I could use the function pointer's equality to zero as a compile-time switch to choose an empty function implementation:

  template <bool x> struct tag {};

  template <class D>
  struct B
  {
      template <class X> void f(X) {}

      template <class X, void (D::*pmf)(X) = 0 >
      struct row {
          void h() { h(tag<(pmf == 0)>(), pmf); }
          void h(tag<1>, ...) {}
          void h(tag<0>, void (D::*q)(X)) { /*something*/}
      };
  };

  struct D : B<D>
  {
      void g(int);
      row<int,&D::g> r1;
      row<char*> r2;
  };

But there appears to be no way to get that effect either. The result is that you end up doing something like:

      template <class X, void (D::*pmf)(X) = 0 >
      struct row {
          void h() { if (pmf) /*something*/ }
      };

which invariably makes compilers warn that you're switching on a constant expression.

Additional notes (February, 2023)

Even the following simple case fails on all major implementations:

  struct B { void f(); };
  struct D : B {};

  template<void (D::*)()>
  int g();

  int x = g<&D::f>();

Subclause 7.7 [expr.const] paragraph 12 is unambiguous that the code is ill-formed, but that seems unfortunate.

CWG 2023-06-15

CWG noted that the derived-to-base conversion is also not allowed for arguments for non-type template parameters. Permitting such conversions is an extension, not a defect.